Cubature on Wiener Space: Pathwise Convergence

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cubature on Wiener Space: Pathwise Convergence

A. Cubature on Wiener space [Lyons, T.; Victoir, N.; Proc. R. Soc. Lond. A 8 January 2004 vol. 460 no. 2041 169-198] provides a powerful alternative to Monte Carlo simulation for the integration of certain functionals on Wiener space. More specifically, and in the language of mathematical finance, cubature allows for fast computation of European option prices in generic diffusion models....

متن کامل

Cumulants on the Wiener Space

We combine infinite-dimensional integration by parts procedures with a recursive relation on moments (reminiscent of a formula by Barbour (1986)), and deduce explicit expressions for cumulants of functionals of a general Gaussian field. These findings yield a compact formula for cumulants on a fixed Wiener chaos, virtually replacing the usual “graph/diagram computations” adopted in most of the ...

متن کامل

Comparison inequalities on Wiener space

We de ne a covariance-type operator on Wiener space: for F and G two random variables in the Gross-Sobolev space D of random variables with a square-integrable Malliavin derivative, we let ΓF,G:= ⟨ DF,−DL−1G ⟩ , where D is the Malliavin derivative operator and L−1 is the pseudo-inverse of the generator of the Ornstein-Uhlenbeck semigroup. We use Γ to extend the notion of covariance and canonica...

متن کامل

Convergence in total variation on Wiener chaos

Let {Fn} be a sequence of random variables belonging to a nite sum of Wiener chaoses. Assume further that it converges in distribution towards F∞ satisfying Var(F∞) > 0. Our rst result is a sequential version of a theorem by Shigekawa [25]. More precisely, we prove, without additional assumptions, that the sequence {Fn} actually converges in total variation and that the law of F∞ is absolutely ...

متن کامل

A Lie Algebroid on the Wiener Space

Infinite dimensional Poisson structures play a big role in the theory of infinite dimensional Lie algebras 1 , in the theory of integrable system 2 , and in field theory 3 . But for instance, in 2 , the test functional space where the hydrodynamic Poisson structure acts continuously is not conveniently defined. In 4, 5 we have defined such a test functional space in the case of a linear Poisson...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics & Optimization

سال: 2012

ISSN: 0095-4616,1432-0606

DOI: 10.1007/s00245-012-9187-8